Sains Malaysiana 52(10)(2023): 2855-2567

http://doi.org/10.17576/jsm-2023-5210-10

 

Revealing the Potency of 1,3,5-Trisubstituted Pyrazoline as Antimalaria through Combination of In Silico Studies

(Mendedahkan Potensi Pirazolin 1,3,5-Tritertukarganti sebagai Antimalaria melalui Gabungan Kajian in silico)

 

HERLINA RASYID1,*, NUNUK HARIANI SOEKAMTO1, SYADZA FIRDAUSIAH1,2, RISKA MARDIYANTI1, BAHRUN1, SISWANTO3, MUHAMMAD ASWAD4, WAHYU DITA SAPUTRI5, ARTANIA A. T. SUMA6, NUR HILAL SYAHRIR7 & RISNITA VICKY LISTYARINI8,9

 

1Chemistry Department, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar, South Sulawesi 90245, Indonesia

2Nano Life Science Institute, Graduate School of Frontier Science Initiative, Kanazawa University, Japan

3Department of Statistics, Hasanuddin University, Makassar, South Sulawesi 90245, Indonesia

4Faculty of Pharmacy, Hasanuddin University, Makassar, South Sulawesi 90245, Indonesia

5Research Center for Quantum Physics, National Research and Innovation Agency (BRIN), Habibie Science and Technology Complex (Puspiptek), Serpong 15314, South Tangerang, Indonesia

6Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Bulaksumur, Yogyakarta, 55281, Indonesia

7Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Sulawesi Barat, Majene, 90311, Indonesia

8Theoretical Chemistry Division, Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82A, A-6020 Innsbruck, Austria

9Chemistry Education Study Program, Sanata Dharma University, Yogyakarta 55282, Indonesia

 

Received: 31 May 2023/Accepted: 14 September 2023

 

Abstract

The potency of 1,3,5-trisubstituted pyrazoline as an antimalarial agent has been studied through quantitative structure-activity relationship, molecular docking, and molecular dynamics simulation as a combination of in silicostudies. The study commenced by applying quantitative structure-activity relationship (QSAR) to 25 derivative compounds using 3D-descriptor. The genetic algorithm and multiple linear regression analysis were used to construct the QSAR model, which resulting an equation that has Rtraining as 0.8100 and Rtest set as 0.9222. Descriptors involved in the QSAR equation are TDB4 m, TDB8s, RDF30e, and RDF552, all of which belong to the group of 3D autocorrelation and RDF. This result is in line with the principal component analysis, which shows that both group descriptors represent whole 3D descriptors. Molecular docking analysis is conducted to study the interaction between pyrazoline derivatives and the falcipain-2 enzyme. Interactions between compound 14 and falcipain-2 is describing by hydrogen bond against Glu14 amino acid residue, more pi-stacking interaction, and van der Waals. Chloroquine as a positive control also presented one hydrogen bond with Gly83, pi-sulfur against Cys42, and van der Waals. The stability of the ligand–enzyme interaction is evaluated by molecular dynamics simulation, and after 100 ns simulations, the root mean square deviation results show that compound 14 and chloroquine have a stable interaction with the falcipain-2 enzyme. Overall, this research provides the insight of 1,3,5-trisubstitued pyrazoline compounds as antimalaria by giving a QSAR equation and used to design a better falcipain-2 inhibitors. 

 

Keywords: Antimalaria; molecular docking; molecular dynamics simulation; QSAR; 1,3,5-trisubstituted pyrazoline

Abstrak

Potensi pirazolin 1,3,5-tritertukarganti sebagai agen antimalaria telah dikaji melalui hubungan struktur-aktiviti kuantitatif, dok molekul dan simulasi dinamik molekul sebagai gabungan kajian in silico. Kajian dimulakan dengan menggunakan hubungan struktur-aktiviti kuantitatif (QSAR) kepada 25 sebatian terbitan menggunakan petunjuk 3D. Algoritma genetik dan analisis linear berbilang telah digunakan untuk membina model QSAR yang menghasilkan persamaan yang mempunyai Rtraining sebagai 0.8100 dan Rtest set sebagai 0.9222. Petunjuk yang terlibat dalam persamaan QSAR ialah TDB4 m, TDB8s, RDF30e dan RDF552 yang kesemuanya tergolong dalam kumpulan autokorelasi 3D dan RDF. Keputusan ini adalah selaras dengan analisis komponen utama yang menunjukkan bahawa kedua-dua petunjuk kumpulan mewakili keseluruhan petunjuk 3D. Analisis dok molekul dijalankan untuk mengkaji interaksi antara terbitan pirazolin dan enzim falcipain-2. Interaksi antara sebatian14 dan falcipain-2 diterangkan dengan ikatan hidrogen terhadap residu asid amino Glu14, lebih banyak interaksi susun pi dan van der Waals. Klorokuin sebagai kawalan positif juga membentangkan suatu ikatan hidrogen dengan Gly83, pi-sulfur terhadap Cys42 dan van der Waals. Kestabilan interaksi ligan-enzim dinilai oleh simulasi dinamik molekul dan selepas simulasi 100 ns, hasil sisihan kuasa dua punca purata menunjukkan bahawa sebatian14 dan klorokuin mempunyai interaksi yang stabil dengan enzim falcipain-2. Secara keseluruhannya, penyelidikan ini memberikan gambaran tentang sebatian pirazolin 1,3,5-tritertukarganti sebagai antimalaria dengan memberikan persamaan QSAR dan digunakan untuk mereka bentuk perencat falcipain-2 yang lebih baik.

 

Kata kunci: Antimalaria; dok molekul; QSAR; pirazolina 1,3,5-tritertukarganti; simulasi dinamik molekul

 

references

Acharya, B.N., Saraswat, D., Tiwari, M., Shrivastava, A.K., Ghorpade, R., Bapna, S. & Kaushik, M.P. 2010. Synthesis and antimalarial evaluation of 1,3,5-trisubstituted pyrazolines. European Journal of Medicinal Chemistry 45: 430-438.

Banjare, L., Singh, Y., Verma, S.K., Singh, A.K., Kumar, P., Kumar, S., Jain, A.K. & Thareja, S. 2023. Multifaceted 3D-QSAR analysis for the identification of pharmacophoric features of biphenyl analogues as aromatase inhibitors. Journal of Biomolecular Structure and Dynamics 41(4): 1322-1341.

BIOVIA. 2019. Discovery Studio Visualizer, Dassault Systèmes, San Diego.

Chimentri, F., Bolasco, A., Manna, F., Secci, D., Chimenti, P., Granese, A., Befani, O., Turini, P., Cirilli, R., La Torre, F., Alcaro, S., Ortuso, F. & Langer, T. 2006. Synthesis, biological evaluation and 3D-QSAR of 1,3,5-Trisubstituted-4,5- Dihydro-(1H)-pyrazole derivatives as potent and highly selective monoamine oxidase a inhibitors. Current Medicinal Chemistry 13: 1411-1428.

De Oliveira, D.B. & Gaudio, A.C. 2000. BuildQSAR: A new computer program for QSAR analysis. Quant. Struct.-Act. Relat. 19: 599-601.

Gemma, S., Campiani, G., Butini, S., Kukreja, G., Joshi, B.P., Persico, M., Catalanotti, B., Novellino, E., Fattorusso, E., Nacci, V., Savini, L., Taramelli, D., Basilico, N., Morace, G., Yardley, V. & Fattorusso, C. 2007. Design and synthesis of potent antimalarial agents based on clotrimazole scaffold: Exploring an innovative pharmacophore. J. Med. Chem. 50: 595-598.

George, R.F., Kandeel, M., El-Ansary, D.Y. & El Kerdawy, A.M. 2020. Some 1,3,5-trisubstituted pyrazoline derivatives targeting breast cancer: Design, synthesis, cytotoxic activity, EGFR inhibition and molecular docking. Bioorg. Chem. 99: 103780.

Gogoi, P., Shakya, A., Ghosh, S.K., Gogoi, N., Gahtori, P., Singh, N., Bhattacharyya, D.R., Singh, U.P. & Bhat, H.R. 2020. In silico study, synthesis, and evaluation of the antimalarial activity of hybrid dimethoxy pyrazole 1,3,5-triazine derivatives. Journal of Biochemical and Molecular Toxicology 35(3): e22682.

Hammoudan, I. & Chafi, M. 2023. QSAR modelling of pyrazoline derivative as carbonic anhydrase inhibitors. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-023-28277-3

Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E. & Hutchison, G.R. 2012. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics 4(17): 1-17.

Hemmateenejad, B., Akhond, M., Miri, R. & Shamsipur, M. 2003. Genetic algorithm applied to the selection of factors in principal component-artificial neural networks: Application to QSAR study of calcium channel antagonist activity of 1,4-dihydropyridines (nifedipine analogous). Journal of Chemical Information and Computer Sciences 43(4): 1328-1334.

Himangini, Pathak, D.P., Sharma, V. & Kumar, S. 2018. Designing novel inhibitors against falcipain-2 of Plasmodium falciparum. Bioorganic & Medicinal Chemistry Letters 28: 1566-1569.

Kassambara, A. & Mundt, F. 2017. Package ‘Factoextra’, Extract and Visualize the Result of Multivariate Analyses. https://cran.r-project.org/web/packages/factoextra/index.html

Kennard, R.W. & Stone, L.A., Feb. 1969. Computer aided design of experiments. Technometrics 11(1): 137148.

Land, H. & Humble, M.S. 2018. YASARA: A tool to obtain structural guidance in biocatalytic investigations. Methods Mol. Biol. 1685: 43-67.

Laskar, Y.B., Mazumder, P.B. & Talukdar, A.D. 2023. Hibiscus sabdariffa anthocyanins are potential modulators of estrogen receptor alpha activity with favourable toxicology: A computational analysis using molecular docking, ADME/Tox prediction, 2D/3D QSAR and molecular dynamics simulation. Journal of Biomolecular Structure and Dynamics 41(2): 611-633.

Latifah, N., Subarnas, A. & Chaerunnisaa, A.Y. 2020. Antimalaria medicine and its mechanism: A review. Majalah Farmasetika 5(1): 39-48.

Le, S., Josse, J. & Husson, F. 2008. FactoMineR: An R package for multivariate analysis. Journal of Statistical Software 25(1): 1-18.

Mandal, S., Moudgil, M. & Mandal, S.K. 2009. Rational drug design. European Journal of Pharmacology 625: 90-100.

Mark, P. & Nilsson, L. 2001. Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J. Phys. Chem. A 105(43): 9954-9960.

Mishra, V.K., Mishra, M., Kashaw, V. & Kashaw, S.K. 2017. Synthesis of 1,3,5-trisubstituted pyrazolines as potential antimalarial and antimicrobial agents. Bioorganic & Medicinal Chemistry 25(6): 1949-1962.

Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S. & Olson, A.J. 2009. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 30(16): 2785-2791.

Nandi, S., Kumar, P., Amin, S.A., Jha, T. & Gayen, S. 2021. First molecular modelling report on tri-substituted pyrazolines as phosphodiesterase 5 (PDE5) inhibitors through classical and machine learning based multi-QSAR analysis. SAR and QSAR in Environmental Research 32(11): 917-939.

Neese, F., Wennmohs, F., Becker, U. & Riplinger, C. 2020. The ORCA quantum chemistry program package. The Journal of Chemical Physics 152(22): 224108.

Pandey, A.K., Sharma, S., Pandey, M., Alam, M.M., Shaquiquzzaman, M. & Akhter, M. 2016. 4,5-Dihydrooxazole-pyrazoline hybrids: Synthesis and their evaluation as potential antimalarial agents. European Journal of Medicinal Chemistry 123: 476-486.

Pornputtapong, N., Suriyapakorn, B., Satayamapakorn, A., Larpadisorn, K., Janviriyakul, P. & Khemawoot, P. 2020. In silico analysis for factors affecting anti-malarial penetration into red blood cells. Malaria Journal. 19: 215.

Rasyid, H., Soekamto, N.H., Seniwati, Firdausiah, S. & Firdaus. 2023. Modelling the anticancer activity of 4-alkoxy cinnamic analogues using 3D-descriptors and genetic algorithm-multiple linear regression (GA-MLR) method. Journal of King Saud University – Science 35(3): 102514.

Ugwu, D.I., Ugwu, M.C., Eze, F.U., Eze, C.C., Ugwuja, D.I., Ekoh, O.C. & Ezugwu, J.A. 2020. Design of antimalarial agents: A review. Journal of Pharmaceutical Research and Therapeutics 1(1): 09-19.

Veerasamy, R., Rajak, H., Jain, A., Sivadasan, S., Varghese, C. P. & Agrawal, R. K. 2011. Validation of QSAR Models – Strategies and Importance. International Journal of Drug Design and Discovery. 2(3): 5110519

Venkatesan, J., Prabha, T., Selvaraj, J., Sudeepan, J. & Thangavel, S. 2023. A machine learning language to build a QSAR model of pyrazoline derivative inhibitors targeting Mycobacterium tuberculosis strain H37Rv. Letters in Drug Design & Discovery 20(2): 167-180.

Wanare, G., Aher, R., Kawathekar, N., Ranjan, R., Kaushik, N.K. & Sahal, D. 2010. Synthesis of novel α-pyranochalcones and pyrazoline derivatives as Plasmodium falciparum growth inhibitors. Bioorganic & Medicinal Chemistry Letters 20: 4675-4678.

Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A. & Case, D.A. 2004. Development and testing of a general AMBER force field. J. Comput. Chem. 25(9): 1157-1174.

White, N.J. 2004. Antimalarial drug resistance. The Journal of Clinical Investigation 113(8): 1084-1092.

Winstanley, P. 2001. Modern chemotherapeutic options for malaria. Lancet Infectious Disease 1: 242-250.

Yap, C.W. 2011. PaDEL-Descriptor: An open source software to calculate molecular
descriptors and fingerprints. Journal of Computational Chemistry 32: 1466-1474.

 

*Corresponding author; email: herlinarasyid@unhas.ac.id

 

 

 

 

 

 

 

previous